[1] 周丽, 王淼, 董晓艳. 5岁及以下儿童社区获得性肺炎进展为重症肺炎的流行病学特点[J]. 上海医学, 2023, 46(7):465-470. [2] 王爽, 王雪峰, 李娜, 等. 1788例社区获得性肺炎非细菌性病原体分布特征分析[J]. 中国当代儿科杂志, 2023, 25(6):633-638. [3] 莫亚玲,赵德运. 不同治疗方案对合并反复呼吸道感染史儿童重症社区获得性肺炎的效果观察[J]. 实用临床医药杂志, 2024, 28(6):51-55,64. [4] 赵艳玲, 高会影, 陈丽丽. 生存素和自然杀伤T细胞在宫颈癌中的表达及价值[J]. 中国临床研究, 2023, 36(5):684-688. [5] CHENG JY, TANG MM, FANG P, et al.Longitudinal associations of serum survivin with the severity and prognosis of community-acquired pneumonia patients[J]. Respir Investig, 2023, 61(1):84-94. [6] WU H, PAN J.Correlation between serum 4-HNE and lactic acid levels and disease status in patients with severe pneumonia and its diagnostic value and prognostic evaluation[J]. Am J Transl Res, 2023, 15(3):1913-1920. [7] ZHU Y, ALMUNTASHIRI S, HAN Y, et al.The Roles of CCN1/CYR61 in Pulmonary Diseases[J]. Int J Mol Sci, 2020, 21(21):7810-7825. [8] 中华医学会儿科学分会呼吸学组, 《中华儿科杂志》编辑委员. 儿童社区获得性肺炎管理指南(2013修订)[J]. 中华儿科杂志, 2013, 51(10): 745-752. [9] 宋国维. 小儿危重病例评分[J]. 中华急诊医学杂志, 2003, 12(5): 359-360. [10] 王婧文, 王学莲, 底建辉. 儿童社区获得性肺炎血清MLR、PLR与疾病严重程度的相关性及危险因素分析[J]. 中国实验诊断学, 2023, 27(10):1170-1174. [11] FARNAES L, WILKE J, RYAN LOKER K, et al.Community-acquired pneumonia in children: cell-free plasma sequencing for diagnosis and management[J]. Diagn Microbiol Infect Dis, 2019, 94(2):188-191. [12] 张涵,高延秋,张华. 2型糖尿病合并重症社区获得性肺炎患者死亡相关影响因素及病原学分布特点[J]. 实用临床医药杂志,2023,27(5):128-133,137. [13] RATAGERI VH, PANIGATTI P, MUKHERJEE A, et al.Role of procalcitonin in diagnosis of community acquired pneumonia in Children[J]. BMC Pediatr, 2022, 22(1):217-225. [14] LIN TY, CHAN HH, CHEN SH, et al.BIRC5/survivin is a novel ATG12-ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells[J]. Autophagy, 2020, 16(7):1296-1313. [15] JAFARZADEH A, BAZARGAN N, CHATRABNOUS N, et al.Contribution of survivin to the immune system, allergies and autoimmune diseases[J]. Hum Immunol, 2023, 84(4):301-310. [16] JIANG YL, LIU HY, TANG MM, et al.Serum Level of 4-Hydroxynonenal in Community-Acquired Pneumonia: A Potential Biomarker for Severity and Prognosis[J]. Front Med (Lausanne), 2022, 9:798343. [17] PARK JM, PARK JE, PARK JS, et al.Anti-inflammatory and antioxidant mechanisms of coniferaldehyde in lipopolysaccharide-induced neuroinflammation: Involvement of AMPK/Nrf2 and TAK1/MAPK/NF-κB signaling pathways[J]. Eur J Pharmacol, 2024, 979(1):176850. [18] MOORING M, YEUNG GA, LUUKKONEN P, et al. Hepatocyte CYR61 polarizes profibrotic macrophages to orchestrate NASH fibrosis[J]. Sci Transl Med, 2023, 15(715):eade3157. [19] CHEN Q, JIA Z, QU C.Inhibition of KLF6 reduces the inflammation and apoptosis of type II alveolar epithelial cells in acute lung injury[J]. Allergol Immunopathol (Madr), 2022, 50(5):138-147. [20] FALCONES B, SÖDERLUND Z, IBÁÑEZ-FONSECA A, et al. hLMSC Secretome Affects Macrophage Activity Differentially Depending on Lung-Mimetic Environments[J]. Cells, 2022, 11(12):1866-1878. [21] YAO MX, CHENG JY, LIU Y, et al.Cross-sectional and longitudinal associations of serum Cysteine-rich 61 with severity and prognosis among community-acquired pneumonia patients in China[J]. Front Med (Lausanne), 2022, 9:939002. [22] JIN D, DAI Z, ZHAO L, et al.CYR61 is Involved in Neonatal Hypoxic-ischemic Brain Damage Via Modulating Astrocyte-mediated Neuroinflammation[J]. Neuroscience, 2024, 552(1):54-64. [23] HEO YJ, PARK J, LEE N, et al.Cysteine-rich 61 inhibition attenuates hepatic insulin resistance and improves lipid metabolism in high-fat diet fed mice and HepG2 cells[J]. FASEB J, 2024, 38(15):e23859. |