人民卫生出版社系列期刊
ISSN 2096-2738 CN 11-9370/R

中国科技核心期刊(中国科技论文统计源期刊)
中国科学引文数据库(CSCD)来源期刊
《中国学术期刊影响因子年报》统计源期刊
美国化学文摘社(CAS)数据库收录期刊
日本科学技术振兴机构(JST)数据库收录期刊

新发传染病电子杂志 ›› 2025, Vol. 10 ›› Issue (5): 53-58.doi: 10.19871/j.cnki.xfcrbzz.2025.05.010

• 论著 • 上一篇    下一篇

分子诊断技术联合相关细胞因子表达水平检测对肺结核与非结核分枝杆菌肺病的鉴别诊断价值分析

赵云, 徐芳, 王琛, 盛芳   

  1. 苏州大学附属张家港医院感染性疾病科,江苏 张家港 215600
  • 收稿日期:2025-03-21 出版日期:2025-10-31 发布日期:2025-11-17
  • 通讯作者: 盛芳, Email:
  • 基金资助:
    张家港市科技局项目(ZKYL2461)

Analysis of the diagnostic value of molecular diagnostic techniques combined with cytokine expression for differentiating pulmonary tuberculosis from nontuberculous mycobacterial lung infections

Zhao Yun, Xu Fang, Wang Chen, Sheng Fang   

  1. Department of infectious diseases, Zhangjiagang Hospital Affiliated to Suzhou University, Jiangsu Suzhou 215600, China
  • Received:2025-03-21 Online:2025-10-31 Published:2025-11-17

摘要: 目的 探究分子诊断技术联合相关细胞因子表达水平检测对肺结核与非结核分枝杆菌(nontuberculous mycobacteria,NTM)肺病的鉴别诊断价值,为临床精准区分肺结核与NTM肺病提供多指标联合诊断依据。方法 回顾性分析2022年1月至2024年7月就诊于苏州大学附属张家港医院的70例肺结核患者(观察组)及40例NTM肺病患者(对照组)的临床资料。所有患者均接受超敏结核分枝杆菌及利福平耐药基因(Xpert MTB/RIF Ultra)检测,同时测定患者部分外周血细胞因子表达水平,包括白细胞介素(interleukin,IL)-2、IL-4、IL-5、IL-6、IL-10、IL-12/23p40、IL-17和肿瘤坏死因子α(tumor necrosis factor α,TNF-α)。通过二元Logistic回归分析肺结核与NTM肺病鉴别诊断密切相关的危险因素。应用受试者操作特征(receiver operating characteristic,ROC)曲线、校准曲线及决策曲线(decision curve analysis,DCA)评价各危险因素联合应用于鉴别诊断肺结核与NTM肺病的诊断效能。结果 观察组患者Xpert MTB/RIF Ultra检测阳性率和IL-4、IL-6、IL-12/23p40水平均显著高于对照组患者,TNF-α水平显著低于对照组患者(P<0.05);单因素及多因素Logistic回归分析结果表明,Xpert MTB/RIF Ultra检测阳性率、IL-6、IL-12/23p40、TNF-α是诊断肺结核的影响因素(P<0.05);ROC曲线分析表明,Xpert MTB/RIF Ultra检测阳性率、IL-6、IL-12/23p40、TNF-α联合鉴别诊断肺结核的曲线下面积(95%CI)=0.889(0.821~0.957),校准曲线、DCA曲线均表明基于上述指标联合鉴别诊断的准确性良好且临床收益较高。结论 基于分子诊断技术Xpert MTB/RIF Ultra和IL-6、IL-12/23p40、TNF-α水平的联合鉴别诊断肺结核与NTM肺病具有较高效能。

关键词: 肺结核, 非结核分枝杆菌, 分子诊断技术, 细胞因子, 鉴别诊断

Abstract: Objective To investigate the diagnostic efficacy of integrating molecular diagnostic methods with cytokine expression for distinguishing from pulmonary tuberculosis and nontuberculous mycobacterial(NTM) lung disease. Method A study was carried out to retrospectively analyze the clinical data of 70 patients diagnosed with pulmonary tuberculosis (referred to as the observation group) and 40 patients with NTM lung disease (the control group) treated at our hospital between January 2022 and July 2024. All individuals underwent testing using Xpert MTB/RIF Ultra, and their peripheral blood serum cytokine expression profiles were assessed, including interleukin (IL)-2, IL-4, IL-5, IL-6, IL-10, IL-12/23p40, IL-17 and tumor necrosis factor α (TNF-α). Binary logistic regression analysis was performed to investigate risk factors risk factors closely associated with the accurate identification of pulmonary tuberculosis. The effectiveness of each risk factor in combination for discriminating pulmonary tuberculosis was assessed using methods such as the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). Result The detection rate of Xpert MTB/RIF Ultra testing and the mean levels of IL-4, IL-6, and IL-12/23p40 in the observation group were significantly higher compared to those in the control group, whereas the mean level of TNF-α was significantly lower than that in the control group (P<0.05). Univariate and multivariate logistic regression analysis demonstrated that Xpert MTB/RIF Ultra testing, IL-6, IL-12/23p40, and TNF-α were independent factors influencing the diagnosis of pulmonary tuberculosis (P< 0.05). The ROC curve analysis revealed that the AUC (95%CI) for the combined differential diagnosis of pulmonary tuberculosis utilizing Xpert MTB/RIF Ultra testing, IL-6, IL-12/23p40, and TNF-α was 0.889 (0.821-0.957). Both the calibration curve and DCA curve confirmed that the combined diagnostic model based on these parameters exhibited high accuracy and substantial clinical returns. Conclusion The efficacy of the model utilizing the molecular diagnostic method Xpert MTB/RIF Ultra together with IL-6, IL-12/23p40, and TNF-α in discriminating between pulmonary tuberculosis and NTM lung disease is considerable.

Key words: Pulmonary tuberculosis, Nontuberculous mycobacteria, Molecular diagnostic techniques, Cytokines, Differential diagnosis

中图分类号: