人民卫生出版社系列期刊
ISSN 2096-2738 CN 11-9370/R

中国科技核心期刊(中国科技论文统计源期刊)
中国科学引文数据库(CSCD)来源期刊
《中国学术期刊影响因子年报》统计源期刊
美国化学文摘社(CAS)数据库收录期刊
日本科学技术振兴机构(JST)数据库收录期刊

新发传染病电子杂志 ›› 2025, Vol. 10 ›› Issue (4): 58-64.doi: 10.19871/j.cnki.xfcrbzz.2025.04.010

• 论著 • 上一篇    下一篇

基于CT图像的人体脂肪成分及影像组学在肝硬化不良结局预测中的应用

谢囡霭1, 梁译文1, 罗梓欣1, 邹观南1, 郭峰2, 蒋奕1   

  1. 1.香港中文大学(深圳)附属第二医院/深圳市龙岗区人民医院影像科,广东 深圳 518172;
    2.新疆维吾尔自治区中医医院肝病科,新疆 乌鲁木齐 830000
  • 收稿日期:2024-12-21 出版日期:2025-08-31 发布日期:2025-09-18
  • 通讯作者: 蒋奕,Email:jacky_1001@163.com

Application of CT-based body adipose composition and radiomics in predicting adverse outcomes in patients with cirrhosis

Xie Nan'ai1, Liang Yiwen1, Luo Zixin1, Zou Guannan1, Guo Feng2, Jiang Yi1   

  1. 1. Department of Radiology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Guangdong Shenzhen 518172, China;
    2. Department of Liver Disease, Xinjiang Uygur Autonomous Region Chinese Medicine Hospital, Xinjiang Urumqi 830000, China
  • Received:2024-12-21 Online:2025-08-31 Published:2025-09-18

摘要: 目的 探讨CT图像的人体脂肪成分分析在肝硬化患者中预测不良结局的价值,并联合肝脾影像组学模型,以提升风险评估能力。方法 回顾性纳入243例2016年9月至2020年12月来自新疆维吾尔自治区中医院(184例)与香港中文大学(深圳)附属第二医院(59例)的肝硬化患者,其中包括153例病毒性肝炎相关肝硬化。所有患者根据随访期间(≥3个月)是否发生自发性细菌性腹膜炎等严重并发症分为无不良结局组(n=119)和不良结局组(n=124);在第三腰椎水平定量测量脂肪成分,并提取肝脾区域的影像组学特征,构建多种机器学习模型评估其预测性能。结果 脂肪模型在新疆维吾尔自治区中医院与香港中文大学(深圳)附属第二医院的受试者操作特征曲线(receiver operating characteristic curve,ROC曲线)的曲线下面积(area under the curve,AUC)分别为0.804和0.749,优于影像组学模型(AUC=0.767和0.712);沙普利加性解释法(Shapley additive explanations,SHAP)结果显示,肌间隙脂肪体积比例和皮下脂肪体积是主要预测因子;联合模型的预测效能则有显著提升(AUC=0.856和0.780;综合判别改善指数=0.125, 0.163,P<0.05)。结论 人体脂肪成分在肝炎相关肝硬化患者中可有效预测发生不良结局的风险,结合肝脾影像组学特征可进一步提升评估准确性,有望为病毒性肝病的个体化管理与早期干预提供新策略。

关键词: 肝硬化, 预后预测, 计算机断层扫描, 脂肪组织, 机器学习

Abstract: Objective This study aimed to explore the predictive efficacy of body adipose composition analysis using CT imaging for adverse outcomes in patients with cirrhosis and to enhance predictive performance by integrating a radiomics model based on liver and spleen regions. Method 243 patients with liver cirrhosis were retrospectively enrolled from two centers between September 2016 and December 2020, including 153 cases of hepatitis B or C virus-related cirrhosis. Patients were classified into non-adverse outcome group (n=119) and adverse outcome group (n=124) based on the occurrence of severe complications such as spontaneous bacterial peritonitis during the follow-up period (over 3 months). Quantitative measurements of body adipose composition were performed at the third lumbar vertebra level, and radiomic features of the liver and spleen were extracted. Multiple machine learning models were developed to evaluate predictive performance. Result The area under the receiver operating characteristic curve (AUC) for the adipose tissue model at the two centers was 0.804 and 0.749, respectively, outperforming the radiomics model (AUC=0.767 and 0.712). Shapley additive explanations (SHAP) analysis identified intermuscular fat ratio and subcutaneous fat volume as key predictors of adverse outcomes. The predictive efficacy of the combined model was significantly improved (AUC=0.856 and 0.780; integrated discrimination improvement index=0.125, 0.163, P<0.05). Conclusion body adipose composition can effectively predict the risk of adverse outcomes in patients with viral hepatitis-related cirrhosis. The integration of liver and spleen radiomics features further enhances predictive accuracy, offering a promising approach for individualized risk management and early intervention in viral liver diseases.

Key words: Liver cirrhosis, Prognostic prediction, Computed tomography, Adipose Tissue, Machine learning

中图分类号: