人民卫生出版社系列期刊
ISSN 2096-2738 CN 11-9370/R

中国科技核心期刊(中国科技论文统计源期刊)
2020《中国学术期刊影响因子年报》统计源期刊
美国化学文摘社(CAS)数据库收录期刊
日本科学技术振兴机构(JST)数据库收录期刊

新发传染病电子杂志 ›› 2025, Vol. 10 ›› Issue (1): 50-55.doi: 10.19871/j.cnki.xfcrbzz.2025.01.010

• 论著 • 上一篇    下一篇

碱性磷酸酶和白介素-8对重型发热伴血小板减少综合征患者早期预测价值研究

许坦1, 周楠2, 胡琴琴1, 肖园园1, 张觅1, 李金龙1   

  1. 1.南京中医药大学附属南京医院(南京市第二医院)检验检测中心,江苏南京 210000;
    2.南京大学医学院附属鼓楼医院医学影像科,江苏南京 210008
  • 收稿日期:2024-10-09 出版日期:2025-02-28 发布日期:2025-03-31
  • 通讯作者: 李金龙,Email:jinlonglilab@njucm.edu.cn
  • 基金资助:
    南京中医药大学自然科学基金(XZR2021079)

Study on the early predictive value of alkaline phosphatase and interleukin-8 for severe patients with severe fever with thrombocytopenia syndrome

Xu Tan1, Zhou Nan2, Hu Qinqin1, Xiao Yuanyuan1, Zhang Mi1, Li Jinlong1   

  1. 1. Department of Clinical Laboratory, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine (Nanjing Second Hospital), Jiangsu Nanjing 210000, China;
    2. Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu Nanjing 210008, China
  • Received:2024-10-09 Online:2025-02-28 Published:2025-03-31

摘要: 目的 分析多种血液指标,寻找对新型布尼亚病毒引起的重型发热伴血小板减少综合征(severe fever with thrombocytopenia syndrome,SFTS)具有早期预测价值的指标并构建联合预测模型,为临床对重型SFTS进行早期干预提供依据。方法 回顾性纳入2023年4月至2024年7月南京市第二医院的98例SFTS住院患者,并依据治疗过程中是否出现合并症将患者分为重型SFTS组(33例)和轻型SFTS组(65例)。收集患者入院后初次检测的血液指标,并比较两组间的差异。将具有显著差异的指标用于构建联合预测模型。通过ROC曲线评估血液指标对重型SFTS的早期预测价值。利用Hosmer-Lemeshow检验和决策曲线评估联合预测模型的校准度和临床适用性。结果 重型SFTS组的B型尿钠肽、D-二聚体、活化部分凝血酶原时间、α-羟丁酸脱氢酶、谷氨酰转肽酶、丙氨酸氨基转移酶、天冬氨酸氨基转移酶线粒体同工酶/天冬氨酸氨基转移酶、天冬氨酸氨基转移酶、天冬氨酸氨基转移酶线粒体同工酶、碱性磷酸酶、磷酸肌酸激酶、乳酸脱氢酶、干扰素-γ(interferon-γ,IFN-γ)、白介素-6(interleukin-6,IL-6)、白介素-8(interleukin-8,IL-8)、白介素-10(interleukin-10,IL-10)和降钙素原水平显著高于轻型SFTS组,而白蛋白、CD3+T淋巴细胞、CD4+T淋巴细胞和CD8+T淋巴细胞水平显著低于轻型SFTS组(均P<0.05)。多因素Logistic回归分析显示碱性磷酸酶[OR=1.029(95%CI:1.005~1.054),P=0.019]和IL-8[OR=1.005(95%CI:1.001~1.009),P=0.026]水平升高为重型SFTS的危险因素。ROC曲线分析显示联合预测模型对重型SFTS具有较好的早期预测价值(AUC=0.893),且联合预测模型具有较好的校准度和临床适用性。结论 基于血液指标构建的联合预测模型对早期预测重型SFTS具有较高的价值和临床适用性,有助于临床医师对重型SFTS患者进行早期预测并开展及时的个体化治疗。

关键词: 重型发热伴血小板减少综合征, 新型布尼亚病毒, 严重程度, 血液指标, 联合预测模型, 早期预测

Abstract: Objective Multiple blood indicators were analyzed to find the indicators with early prediction value for severe patients with severe fever with thrombocytopenia syndrome (SFTS), and a joint prediction model was constructed to provide evidence for early clinical intervention of severe SFTS. Method A total of 98 SFTS inpatients from Nanjing Second Hospital were retrospectively included from April 2023 to July 2024. According to whether complications arose during treatment, they were divided into the severe SFTS group (33 cases) and the mild SFTS group (65 cases). Collecting the blood indicators of patients tested for the first time after admission, and analyzing the differences of blood indicators between the two groups. Blood indicators with significant differences were used to build a joint prediction model. ROC curve was used to evaluate the early predictive value of blood indicators for severe SFTS. Hosmer-Lemeshow test and decision curve were used to evaluate the calibration and clinical applicability of the joint prediction model, respectively. Result B-type natriuretic peptide, D-dimer, activated partial thromboplastin time, α-hydroxybutyrate dehydrogenase, glutamyl transpeptidase, alanine aminotransferase, mitochondrial aspartate aminotransferase/aspartate aminotransferase, aspartate aminotransferase, mitochondrial aspartate aminotransferase, alkaline phosphatase, creatine phosphokinase, lactate dehydrogenase, interferon-γ (IFN-γ), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10) and procalcitonin in the severe SFTS group were significantly higher than those in the mild SFTS group, while albumin, CD3+T cells, CD4+T cells and CD8+T cells in the severe SFTS group were significantly lower than those in the mild SFTS group (all P<0.05). Multivariable analysis showed the increased levels of alkaline phosphatase [OR=1.029 (95%CI: 1.005-1.054), P=0.019] and IL-8 [OR=1.005 (95%CI: 1.001-1.009), P=0.026] were risk factors for severe SFTS. ROC curve analysis showed that the joint prediction model has good predictive value for severe SFTS (AUC=0.893), and the joint prediction model had good calibration and clinical applicability. Conclusion The joint prediction model based on blood indicators had high value and clinical applicability for early predicting severe SFTS, which can help clinicians to early predict patients with severe SFTS and to perform timely individualized treatment.

Key words: Severe fever with thrombocytopenia syndrome, Novel bunyavirus, Severity, Blood indicators, Joint prediction model, Early prediction

中图分类号: