[1] FERACO P, DONNER D, GAGLIARDO C, et al.Cerebral abscesses imaging: A practical approach[J]. J Popul Ther Clin Pharmacol, 2020, 27(3):e11-e24. [2] HAMAGUCHI H, KITAGAWA M, SAKAMOTO D, et al.Quantitative Assessment of Intervertebral Disc Composition by MRI: Sensitivity to Diurnal Variation[J]. Tomography, 2023, 9(3):1029-1040. [3] WÁNG YXJ, ZHAO KX, MA FZ, et al. The contribution of T2 relaxation time to MRI-derived apparent diffusion coefficient (ADC) quantification and its potential clinical implications[J]. Quant Imaging Med Surg, 2023, 13(10):7410-7416. [4] WÁNG YXJ, MA FZ. A tri-phasic relationship between T2 relaxation time and magnetic resonance imaging (MRI)-derived apparent diffusion coefficient (ADC)[J]. Quant Imaging Med Surg, 2023, 13(12):8873-8880. [5] WÁNG YXJ. The very low magnetic resonance imaging apparent diffusion coefficient (ADC) measure of abscess is likely due to pus's specific T2 relaxation time[J]. Quant Imaging Med Surg, 2023, 13(12):8881-8885. [6] WÁNG YXJ, APARISI GÓMEZ MP, RUIZ SANTIAGO F, et al. The relevance of T2 relaxation time in interpreting MRI apparent diffusion coefficient (ADC) map for musculoskeletal structures[J]. Quant Imaging Med Surg, 2023, 13(12):7657-7666. [7] WÁNG YXJ. Natural course of apparent diffusion coefficient (ADC) change after brain ischemic stroke: an alternative explanation by the triphasic relationship between T2 and ADC[J]. Quant Imaging Med Surg, 2024, 14(12):9848-9855. [8] STADNIK TW, CHASKIS C, MICHOTTE A, et al.Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings[J]. AJNR Am J Neuroradiol, 2001, 22(5):969-996. [9] OH J, CHA S, AIKEN AH, et al.Quantitative apparent diffusion coefficients and T2 relaxation times in characterizing contrast enhancing brain tumors and regions of peritumoral edema[J]. J Magn Reson Imaging, 2005, 21(6):701-708. [10] DEMULDER D, ASCHER SM.Uterine Leiomyosarcoma: Can MRI Differentiate Leiomyosarcoma From Benign Leiomyoma Before Treatment[J]? AJR Am J Roentgenol, 2018, 211(6):1405-1415. [11] BURA V, PINTICAN RM, DAVID RE, et al.MRI findings in-between leiomyoma and leiomyosarcoma: a Rad-Path correlation of degenerated leiomyomas and variants[J]. Br J Radiol, 2021, 94(1125):20210283. [12] LUTSEP HL, ALBERS GW, DECRESPIGNY A, et al.Clinical utility of diffusion-weighted magnetic resonance imaging in the assessment of ischemic stroke[J]. Ann Neurol, 1997, 41(5):574-580. [13] EGNELL L, JEROME NP, ANDREASSEN MMS, et al.Effects of echo time on IVIM quantifications of locally advanced breast cancer in clinical diffusion-weighted MRI at 3 T[J]. NMR Biomed, 2022, 35(5):e4654. [14] LEMKE A, LAUN FB, SIMON D, et al.An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen[J]. Magn Reson Med, 2010, 64(6):1580-1585. [15] JEROME NP, D'ARCY JA, FEIWEIER T, et al. Extended T2-IVIM model for correction of TE dependence of pseudo-diffusion volume fraction in clinical diffusion-weighted magnetic resonance imaging[J]. Phys Med Biol, 2016, 61(24):N667-N680. [16] MA FZ, WÁNG YXJ. T2 relaxation time elongation of hepatocellular carcinoma relative to native liver tissue leads to an underestimation of perfusion fraction measured by standard intravoxel incoherent motion magnetic resonance imaging[J]. Quant Imaging Med Surg, 2024,14(1):1316-1322. [17] FÜHRES T, RIEXINGER AJ, LOH M, et al. Echo time dependence of biexponential and triexponential intravoxel incoherent motion parameters in the liver[J]. Magn Reson Med, 2022, 87(2):859-871. [18] WANG YXJ, HUANG H, ZHENG CJ, et al.Diffusion-weighted MRI of the liver: challenges and some solutions for the quantification of apparent diffusion coefficient and intravoxel incoherent motion[J]. Am J Nucl Med Mol Imaging, 2021, 11(2):107-142. [19] CERCUEIL JP, PETIT JM, NOUGARET S, et al.Intravoxel incoherent motion diffusion-weighted imaging in the liver: comparison of mono-, bi- and tri-exponential modelling at 3.0-T[J]. Eur Radiol, 2015, 25(6):1541-1550. [20] KUAI ZX, LIU WY, ZHU YM.Effect of multiple perfusion components on pseudo-diffusion coefficient in intravoxel incoherent motion imaging[J]. Phys Med Biol, 2017, 62(21):8197-8209. [21] WURNIG MC, GERMANN M, BOSS A.Is there evidence for more than two diffusion components in abdominal organs? -A magnetic resonance imaging study in healthy volunteers[J]. NMR Biomed, 2018, 31(1). doi: 10.1002/nbm.3852. [22] RIEXINGER AJ, MARTIN J, RAUH S, et al.On the Field Strength Dependence of Bi- and Triexponential Intravoxel Incoherent Motion (IVIM) Parameters in the Liver[J]. J Magn Reson Imaging, 2019,50(6):1883-1892. [23] CUI Y, DYVORNE H, BESA C, et al.IVIM Diffusion-weighted Imaging of the Liver at 3.0T: Comparison with 1.5T[J]. Eur J Radiol Open, 2015, 2:123-128. [24] LI YT, CERCUEIL JP, YUAN J, et al.Liver intravoxel incoherent motion (IVIM) magnetic resonance imaging: a comprehensive review of published data on normal values and applications for fibrosis and tumor evaluation[J]. Quant Imaging Med Surg, 2017, 7(1):59-78. [25] MAZAHERI Y, HÖTKER AM, SHUKLA-DAVE A, et al. Effect of intravascular contrast agent on diffusion and perfusion fraction coefficients in the peripheral zone and prostate cancer[J]. Magn Reson Imaging, 2018, 51:120-127. [26] BAOHONG W, JING Z, ZANXIA Z, et al.T2 mapping and readout segmentation of long variable echo-train diffusion-weighted imaging for the differentiation of parotid gland tumors[J]. Eur J Radiol, 2022, 151:110265. [27] MA G, XU XQ, ZHU LN, et al.Intravoxel Incoherent Motion Magnetic Resonance Imaging for Assessing Parotid Gland Tumors: Correlation and Comparison with Arterial Spin Labeling Imaging[J]. Korean J Radiol, 2021, 22(2):243-252. [28] YABUUCHI H, KAMITANI T, SAGIYAMA K, et al.Characterization of parotid gland tumors: added value of permeability MR imaging to DWI and DCE-MRI[J]. Eur Radiol, 2020, 30(12):6402-6412. [29] YAO DQ. KING AD, ZHANG R, et al.Assessing parotid gland tumor perfusion with a new imaging biomarker DDVD (diffusion-derived ‘vessel density’): initial promising results[J]. Rofo 2025, RoeFo-4130-KH-10-2024. [30] HAN D, CHOI MH, LEE YJ, et al.Feasibility of Novel Three-Dimensional Magnetic Resonance Fingerprinting of the Prostate Gland: Phantom and Clinical Studies[J]. Korean J Radiol, 2021, 22(8):1332-1340. [31] PANG Y, TURKBEY B, BERNARDO M, et al.Intravoxel incoherent motion MR imaging for prostate cancer: an evaluation of perfusion fraction and diffusion coefficient derived from different b-value combinations[J]. Magn Reson Med, 2013,69(2):553-562. [32] SHINMOTO H, TAMURA C, SOGA S, et al.An intravoxel incoherent motion diffusion-weighted imaging study of prostate cancer[J]. AJR Am J Roentgenol, 2012, 199(4):W496-500. [33] VALERIO M, ZINI C, FIERRO D, et al.3T multiparametric MRI of the prostate: Does intravoxel incoherent motion diffusion imaging have a role in the detection and stratification of prostate cancer in the peripheral zone[J]. Eur J Radiol, 2016, 85(4):790-794. [34] PESAPANE F, PATELLA F, FUMAROLA EM, et al.Intravoxel Incoherent Motion (IVIM) Diffusion Weighted Imaging (DWI) in the Periferic Prostate Cancer Detection and Stratification[J]. Med Oncol, 2017, 34(3):35. [35] IIMA M, NOBASHI T, IMAI H, et al.Effects of diffusion time on non-Gaussian diffusion and intravoxel incoherent motion (IVIM) MRI parameters in breast cancer and hepatocellular carcinoma xenograft models[J]. Acta Radiol Open. 2018, 7(1): 2058460117751565. [36] WU D, ZHANG J.Evidence of the diffusion time dependence of intravoxel incoherent motion in the brain[J]. Magn Reson Med, 2019, 82(6): 2225-2235. [37] HUANG H, ZHENG CJ, WANG LF, et al.Age and gender dependence of liver diffusion parameters and the possibility that intravoxel incoherent motion modeling of the perfusion component is constrained by the diffusion component[J]. NMR Biomed, 2021, 34(3): e4449. [38] WÁNG YXJ. Observed paradoxical perfusion fraction elevation in steatotic liver: An example of intravoxel incoherent motion modeling of the perfusion component constrained by the diffusion component[J]. NMR Biomed, 2021, 34(4):e4488. [39] XIAO BH, WÁNG YXJ. Different tissue types display different signal intensities on b = 0 images and the implications of this for intravoxel incoherent motion analysis: Examples from liver MRI[J]. NMR Biomed, 2021, 34(7): e4522. [40] WÁNG YXJ. A reduction of perfusion can lead to an artificial elevation of slow diffusion measure: examples in acute brain ischemia MRI intravoxel incoherent motion studies[J]. Ann Transl Med, 2021, 9(10): 895. [41] WÁNG YXJ. Mutual constraining of slow component and fast component measures: some observations in liver IVIM imaging[J]. Quant Imaging Med Surg, 2021, 11(6):2879-2887 [42] YU WL, MA FZ, HUANG H, et al. Age and gender differences of normative values of spleen diffusion MRI parameters[J]. Rofo, 2024. Epub ahead of print.doi:10.1055/a-2357-9741. [43] SCHMID-TANNWALD C, THOMAS S, IVANCEVIC MK, et al.Diffusion -weighted MRI of metastatic liver lesions: is there a difference between hypervascular and hypovascular metastases[J]? Acta Radiol, 2014, 55(5): 515-523. [44] SAINIO T, SAUNAVAARA J, KOMAR G, et al.Assessing blood flow in uterine fibroids using intravoxel incoherent motion imaging compared with dynamic contrast-enhanced MRI[J]. Sci Rep, 2025, 15(1): 2980. [45] LI X, BOLAN PJ, UGURBIL K, et al.Measuring renal tissue relaxation times at 7 T[J]. NMR Biomed, 2015, 28(1):63-69. [46] STABINSKA J, THIEL TA, ZÖLLNER HJ, et al. Investigation of diffusion time dependence of apparent diffusion coefficient and intravoxel incoherent motion parameters in the human kidney[J]. Magn Reson Med, 2024. Epub ahead of print. doi:10.1002/mrm.30396. [47] SCHWENZER NF, MACHANN J, HAAP MM, et al.T2* relaxometry in liver, pancreas, and spleen in a healthy cohort of one hundred twenty-nine subjects-correlation with age, gender, and serum ferritin[J]. Invest Radio, 2008, 43(12): 854-860. [48] METENS T, FERRARESI KF, FARCHIONE A, et al.Normal hepatic parenchyma visibility and ADC quantification on diffusion-weighted MRI at 3 T: influence of age, gender, and iron content[J]. Eur Radiol, 2014, 24(12):3123-3133. [49] FIEL MI, DENIZ K, ELMALI F, et al.Increasing hepatic arteriole wall thickness and decreased luminal diameter occur with increasing age in normal livers[J]. J Hepatol, 2011, 55(3):582-586. [50] LAUBACH HJ, JAKOB PM, LOEVBLAD KO, et al.A phantom for diffusion-weighted imaging of acute stroke[J]. J Magn Reson Imaging, 1998, 8(6):1349-1354. [51] HU GW, LI CY, ZHANG G, et al.Diagnosis of liver hemangioma using magnetic resonance diffusion-derived vessel density (DDVD) pixelwise map: a preliminary descriptive study[J]. Quant Imaging Med Surg, 2024, 14(12):8064-8082. [52] FENLON HM, TELLO R, DECARVALHO VL, et al.Signal characteristics of focal liver lesions on double echo T2-weighted conventional spin echo MRI: observer performance versus quantitative measurements of T2 relaxation times[J]. J Comput Assist Tomogr, 2000, 24(2):204-211. [53] CITTADINI G, SANTACROCE E, GIASOTTO V, et al.Focal liver lesions: characterization with quantitative analysis of T2 relaxation time in TSE sequence with double echo time[J]. Radiol Med, 2004, 107(3):166-173. [54] TOKGOZ O, UNLU E, UNAL I, et al.Diagnostic value of diffusion weighted MRI and ADC in differential diagnosis of cavernous hemangioma of the liver[J]. Afr Health Sci, 2016, 16(1):227-233. [55] XU FY, XIAO BH, WÁNG YXJ. The rational of proposing a magnetic resonance slow diffusion metric and its proof-of-concept testing showing hepatocellular carcinoma and the spleen parenchyma have faster diffusion measures than the liver parenchyma[J]. Quant Imaging Med Surg, 2025. Epub ahead of print. doi: 10.21037/qims-2025-537 [56] JU ZG, LENG XM, XIAO BX, et al.Influences of the second motion probing gradient b-value and T2 relaxation time on magnetic resonance diffusion derived ‘vessel density’ (DDVD) calculation: the examples of liver, spleen, and liver simple cyst[J]. Quant Imaging Med Surg, 2025, 15(1): 74-78 [57] ENGLUND EK, REITER DA, SHAHIDI B, et al.Intravoxel Incoherent Motion Magnetic Resonance Imaging in Skeletal Muscle: Review and Future Directions[J]. J Magn Reson Imaging, 2022, 55(4): 988-1012. [58] YUE X, LU Y, JIANG Q, et al.Application of Intravoxel Incoherent Motion in the Evaluation of Hepatocellular Carcinoma after Transarterial Chemoembolization[J]. Curr Oncol, 2022, 29(12):9855-9866. |